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We developed an efficient method for calculating transition rates in large-scale materials. In this method, 
we first reformulated the prefactor of the transition rate in terms of the density of states (DOS) of the 
Hessian matrix and then solved for the DOS using the kernel polynomial method. We demonstrated this 
novel method by calculating the prefactor of the vacancy hop in bulk silver and compared the results to 
the benchmark that was obtained by directly diagonalizing the Hessian matrix.

The transition rates of important kinetic processes in materials are 
essential for our understanding and prediction of material properties. 

For example, the dislocation nucleation rate controls plasticity, 
which determines how much strain materials can sustain. A recent 
discovery [1] of a self-healing mechanism shows that grain boundaries 
after radiation can emit interstitial defects to annihilate the vacancy 
defects nearby. Such a self-healing mechanism might be relevant for 
the design of next-generation nuclear reactors. It is then important 
to know how fast such a self-healing process operates, especially 
when it is also competing with other processes. However, it is usually 
too computationally expensive to calculate transition rates in large-
scale materials. Within harmonic transition state theory [2], one must 
calculate all the eigenvalues of the Hessian matrices at the saddle point 
and the basin minimum. The computational cost then scales cubically 
with respect to system size. Unfortunately, even a simple atomistic 
simulation of dislocation nucleation requires thousands of atoms, which 
in turn produces very large Hessian matrices that can be difficult to 
diagonalize.

In this work, we present a novel method for calculating transition rates 
in large-scale materials. To avoid diagonalizing the Hessian matrix, we 
reformulate the transition rate in terms of the DOS of the Hessian. To 
efficiently solve for the DOS, we employ the kernel polynomial method 
(KPM) [3] in which the DOS is expanded with Chebyshev polynomials. 
The expansion coefficients, that is, the moments, are then obtained with 
stochastic sampling. In the past, KPM has been successfully applied to 
the calculation of the DOS in quantum mechanics simulations [4]. To 
our knowledge, this is the first time the KPM is used in the calculation 
of transition rates in large-scale materials. Assuming that the required 
number of moments is constant and assuming short-ranged potentials, 
our method is linear-scaling with respect to problem size, which makes 

it very promising for application to large-scale systems. Our method also 
offers a good balance between accuracy and computational cost.

We demonstrate our method by computing the rate prefactor for a 
simple vacancy hop in bulk silver. Tests on more complicated processes 
are underway. In Fig. 1, we show the saddle point configuration. For 
simplicity, we show only the atoms around the vacancy, with all bulk 
atoms removed. Atom A is moving to the vacancy B and creating a new 
vacancy C. We calculate the prefactor of this transition with KPM and 
compare it against the benchmark obtained by directly diagonalizing 
Hessian matrices. In KPM, the zero-th moments are simply equal to the 
dimensions of the problems; we therefore can fix the zero-th moments to 
their exact values by properly constructing the random vectors used in 
the calculation of the moments. In Fig. 2, we show that the convergence 
of the prefactor with respect to the number of random vectors using 
exact zero-th moments (red crosses) is much faster than the case 
without using exact zero-th moments (green circles). In a recent work 
[5], the prefactor was calculated using thermodynamic integration in 
which molecular dynamics is performed on model harmonic potentials 
associated with the saddle point and the basin minimum. Compared 
to that work, one prominent advantage of our approach is that we can 
achieve significant error cancellation between the partition functions at 
the saddle point and the basin minimum by using the same sequence of 
random vectors for each. In Fig. 2, the blue triangles are calculated using 
two different sequences of random vectors and converge much slower 
than the case with matched random vectors. In the lower plot of Fig. 2, 
we show an even slower convergence using inexact zero-th moments and 
non-matched random vectors. In Fig. 3, we show the convergence speed 
of the prefactor with respect to the number of moments. The prefactors 
converge to better than 10% error with less than ten moments. Such 
fast convergence makes our method very appealing. In Fig. 4, we show 
the convergence of prefactors with respect to random vectors for five 

Fig. 1. Saddle point configuration for 
vacancy hopping. Atom A is moving to 
vacancy B and creating a new vacancy C. 
For simplicity, we performed the common 
neighbor analysis and removed all atoms 
in face-centered cubic environment.
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different cell sizes. The 10% errors are drawn with dashed 
lines. For all cell sizes, the prefactors converge to the ±10% 
window with fewer than 3,000 random vectors.

In summary, we have developed a powerful method for 
calculating transition rates of important processes in large-
scale materials. Great insight should be accessible with 
this method, for processes such as the migration speed of 
dislocations in metals under shock-waves, which controls 
the flow of plasticity, the unexpected short lifetime of 
dislocations in metal nanocrystals, which is responsible for 
their ultra-strength, and the aggregation of small voids to 
form large voids under stress, which causes the failure of 
materials.
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Fig. 2. Comparison of the 
convergence speeds of prefactors 
(using 400 moments) with 
respect to the number of random 
vectors for four different schemes. 
(Upper plot) We show results 
from (1) exact zero-th moments 
and matched random vectors 
(red crosses), (2) exact zero-
th moments and non-matched 
random vectors (blue triangles), 
and (3) inexact zero-th moments 
and matched random vectors 
(green circles). (Lower plot) 
Results from inexact zero-th 
moments and non-matched 
random vectors. The fluctuation is 
much larger than the other cases. 
Exact prefactors are shown by 
dashed lines in both plots.

Fig. 3. Convergence of prefactors 
(using 20,000 random vectors) 
with respect to the number of 
moments in the Chebyshev 
expansion, for five different 
cell sizes. We find a very fast 
convergence of prefactors 
by increasing the number of 
moments. With 10, 20, 30, 40, 
and 50 moments, prefactors 
converge to 8%, 4%, 2%, 0.8%, 
and 0.6%, respectively.

Fig. 4. Convergence of prefactors 
(using 400 moments) with 
respect to the number of random 
vectors, for five different cell 
sizes. The dashed horizontal lines 
show the ±10% errors from the 
benchmark which is calculated 
by directly diagonalizing the 
Hessian matrices (except for 
the 15x15x15 cell, where the 
benchmark is taken from the 
converged KPM result at 20,000 
random vectors).


